Quick Tip: Fabric Runtime preinstalled packages
Today I have a quick tip for you. I thought that I could find the list of preinstalled Python packages somewhere on Microsoft Learn , but either Microsoft stopped publishing this, or I couldn’t find it. So with this tip, you can easily find the list of preinstalled packages in your Fabric Runtime environment.
There’s not much to it. Just create a new code cell in a Notebook on Microsoft Fabric and enter the following code:
1%%sh
2pip list
This will give you a list of all the preinstalled packages in your Fabric Runtime environment with their versions.
At the time of writing, for Fabric Runtime 1.3, the list is the following:
1Package Version
2---------------------------------- --------------------
3absl-py 2.1.0
4accelerate 0.30.1
5adlfs 2024.2.0
6aiohttp 3.9.3
7aiosignal 1.2.0
8alabaster 0.7.12
9alembic 1.13.2
10anyio 4.2.0
11appdirs 1.4.4
12archspec 0.2.3
13argon2-cffi 21.3.0
14argon2-cffi-bindings 21.2.0
15arrow 1.2.3
16asgiref 3.5.2
17asn1crypto 1.5.1
18astor 0.8.1
19astropy 5.3.4
20asttokens 2.0.5
21async-generator 1.10
22async-lru 2.0.4
23async-timeout 4.0.3
24attrs 23.1.0
25autopep8 2.0.4
26azure-core 1.30.2
27azure-datalake-store 0.0.53
28azure-identity 1.15.0
29azure-keyvault 2023.12.1
30azure-storage 2023.12.1
31azure-storage-blob 12.22.0
32azure-storage-file-datalake 12.16.0
33azureml-synapse 0.0.1
34Babel 2.11.0
35backports.shutil-get-terminal-size 1.0.0
36bcrypt 3.2.0
37beautifulsoup4 4.12.2
38binaryornot 0.4.4
39bitarray 2.5.1
40bkcharts 0.2
41black 23.11.0
42bleach 4.1.0
43blinker 1.6.2
44bokeh 3.3.4
45boltons 23.0.0
46boto 2.49.0
47Bottleneck 1.3.7
48Brotli 1.0.9
49cached-property 1.5.2
50catboost 1.2.3
51certifi 2024.2.2
52cffi 1.16.0
53chardet 4.0.0
54charset-normalizer 2.0.4
55chat-magics 0.1.25.2.28
56chat-magics-fabric 0.2.0.25.2.28
57click 8.1.7
58cloudpickle 2.2.1
59clr-loader 0.2.5
60cmdstanpy 1.1.0
61colorama 0.4.6
62colorlog 6.8.2
63comm 0.2.1
64conda-package-handling 2.2.0
65conda_package_streaming 0.9.0
66configparser 5.0.2
67contextlib2 21.6.0
68contourpy 1.2.0
69convertdate 2.4.0
70cookiecutter 2.5.0
71cryptography 42.0.2
72cycler 0.11.0
73Cython 3.0.8
74cytoolz 0.12.2
75daal4py 2023.1.1
76dash 2.17.1
77dash-core-components 2.0.0
78dash-cytoscape 1.0.2
79dash-html-components 2.0.0
80dash-table 5.0.0
81dask 2023.11.0
82datasets 2.19.1
83debugpy 1.6.7
84decorator 5.1.1
85defusedxml 0.7.1
86dill 0.3.8
87distlib 0.3.8
88distributed 2023.11.0
89distro 1.8.0
90Django 4.1
91docker 7.0.0
92docutils 0.18.1
93ds_copilot 0.1.25.2.28
94dscopilot-installer 0.0.7
95entrypoints 0.4
96et-xmlfile 1.1.0
97executing 0.8.3
98fabric-connection 0.2.0
99fastcache 1.1.0
100fastjsonschema 2.16.2
101filelock 3.11.0
102flake8 7.0.0
103FLAML 2.3.4.post2
104Flask 2.2.5
105flit 3.9.0
106flit_core 3.9.0
107fluent-logger 0.10.0
108fonttools 4.25.0
109frozenlist 1.4.0
110fsspec 2024.3.1
111fsspec_wrapper 0.1.15
112future 0.18.3
113geoanalytics_fabric 1.0.0.1b0
114geographiclib 2.0
115geopy 2.4.1
116gevent 23.9.1
117gitdb 4.0.7
118GitPython 3.1.43
119glob2 0.7
120gmpy2 2.1.2
121graphviz 0.20.1
122greenlet 3.0.1
123gson 0.0.4
124hcrystalball 0.1.10
125HeapDict 1.0.1
126holidays 0.48
127html5lib 1.1
128huggingface_hub 0.23.1
129idna 3.4
130imagecodecs 2023.1.23
131imageio 2.33.1
132imagesize 1.4.1
133importlib-metadata 7.0.1
134importlib_resources 6.4.0
135impulse-python-handler 1.0.29.1.0.0
136inflection 0.5.1
137iniconfig 1.1.1
138interpret 0.6.0
139interpret-core 0.6.0
140intervaltree 3.1.0
141ipykernel 6.28.0
142ipython 8.20.0
143ipython-genutils 0.2.0
144ipywidgets 8.1.2
145isodate 0.6.1
146itsdangerous 2.0.1
147jaraco.classes 3.2.1
148jedi 0.18.1
149jeepney 0.7.1
150Jinja2 3.1.3
151joblib 1.2.0
152joblibspark 0.5.2
153json-tricks 3.17.3
154json5 0.9.6
155jsonpatch 1.32
156jsonpointer 2.1
157jsonschema 4.19.2
158jsonschema-specifications 2023.7.1
159jupyter_client 8.6.0
160jupyter-console 6.6.3
161jupyter_core 5.5.0
162jupyter-events 0.8.0
163jupyter-lsp 2.2.0
164jupyter_server 2.10.0
165jupyter_server_terminals 0.4.4
166jupyter-ui-poll 1.0.0
167jupyterlab 4.0.11
168jupyterlab-pygments 0.1.2
169jupyterlab_server 2.25.1
170jupyterlab-widgets 3.0.10
171keyring 24.3.1
172kiwisolver 1.4.4
173KqlmagicCustom 0.1.114.post25
174lazy_loader 0.3
175lazy-object-proxy 1.6.0
176liac-arff 2.5.0
177libarchive-c 2.9
178libmambapy 1.5.6
179library-metadata-cooker 3.5.0.1
180lightgbm 4.3.0
181lightning-utilities 0.9.0
182llvmlite 0.42.0
183lmdb 1.4.1
184locket 1.0.0
185lunardate 0.2.2
186lxml 4.9.3
187lz4 4.3.2
188Mako 1.3.5
189Markdown 3.4.1
190markdown-it-py 2.2.0
191MarkupSafe 2.1.3
192matplotlib 3.8.0
193matplotlib-inline 0.1.6
194mccabe 0.7.0
195mdurl 0.1.0
196menuinst 2.0.2
197minio 7.1.0
198mistune 2.0.4
199mkl-fft 1.3.8
200mkl-random 1.2.4
201mkl-service 2.4.0
202mlflow-skinny 2.12.2
203mock 4.0.3
204more-itertools 10.1.0
205mpmath 1.3.0
206msal 1.25.0
207msal-extensions 1.0.0
208msgpack 1.0.3
209msrest 0.7.1
210multidict 6.0.4
211multipledispatch 0.6.0
212multiprocess 0.70.15
213munkres 1.1.4
214mypy 1.4.1
215mypy-extensions 1.0.0
216nbclassic 1.0.0
217nbclient 0.8.0
218nbconvert 7.10.0
219nbformat 5.9.2
220nest-asyncio 1.6.0
221networkx 3.1
222nltk 3.8.1
223nni 3.0
224nose 1.3.7
225notebook 7.0.8
226notebook_shim 0.2.3
227notebookutils 1.1.10.35.20250317.2
228numba 0.59.0
229numexpr 2.8.7
230numpy 1.26.4
231numpydoc 1.5.0
232nvidia-ml-py 12.560.30
233oauthlib 3.2.2
234olefile 0.46
235openml 0.12.2
236openpyxl 3.0.10
237optuna 3.6.1
238overrides 7.4.0
239packaging 23.1
240pandas 2.1.4
241pandasnet 1.0
242pandasql 0.7.3
243pandocfilters 1.5.0
244paramiko 2.8.1
245parso 0.8.3
246partd 1.4.1
247path 16.2.0
248pathlib2 2.3.6
249pathspec 0.10.3
250patsy 0.5.3
251pep8 1.7.1
252pexpect 4.8.0
253pickleshare 0.7.5
254pillow 10.2.0
255pip 23.3.1
256pkginfo 1.9.6
257platformdirs 3.10.0
258plotly 5.22.0
259pluggy 1.0.0
260ply 3.11
261portalocker 2.3.0
262powerbiclient 3.1.1
263prettytable 3.5.0
264prometheus-client 0.14.1
265prompt-toolkit 3.0.43
266prophet 1.1.5
267prose.pandas2pyspark 10.5.0rc2024121001
268prose.suggestions 10.4.1
269protobuf 3.20.3
270psutil 5.9.0
271ptyprocess 0.7.0
272pure-eval 0.2.2
273py-cpuinfo 9.0.0
274py4j 0.10.9.7
275pyarrow 14.0.2
276pycodestyle 2.11.1
277pycosat 0.6.6
278pycparser 2.21
279pycurl 7.45.2
280pydocstyle 6.3.0
281pyerfa 2.0.0
282pyflakes 3.2.0
283Pygments 2.15.1
284PyJWT 2.4.0
285pyluach 2.2.0
286PyMeeus 0.5.12
287PyNaCl 1.5.0
288pyodbc 5.0.1
289pyOpenSSL 24.0.0
290pyparsing 3.0.9
291pyperclip 1.8.2
292PyQt5 5.15.10
293PyQt5-sip 12.13.0
294pyrsistent 0.20.0
295PySocks 1.7.1
296pyspark 3.5.1.5.4.20240407
297pytest 7.4.0
298python-dateutil 2.8.2
299python-json-logger 2.0.7
300python-slugify 5.0.2
301pythonnet 3.0.1
302PythonWebHDFS 0.2.3
303pytorch-lightning 2.0.3
304pytz 2023.3.post1
305pywavelets 1.5.0
306PyYAML 6.0.1
307pyzmq 25.1.2
308QDarkStyle 3.2.3
309qstylizer 0.2.2
310QtAwesome 1.2.2
311qtconsole 5.5.1
312QtPy 2.4.1
313referencing 0.30.2
314regex 2023.10.3
315requests 2.31.0
316requests-oauthlib 1.3.0
317responses 0.25.3
318retrying 1.3.4
319rfc3339-validator 0.1.4
320rfc3986-validator 0.1.1
321rgf-python 3.12.0
322rich 13.3.5
323rouge-score 0.1.2
324rpds-py 0.10.6
325Rtree 1.0.1
326ruamel.yaml 0.17.21
327ruamel.yaml.clib 0.2.7
328ruamel-yaml-conda 0.17.21
329safetensors 0.4.2
330SALib 1.5.0
331schema 0.7.7
332scikit-build 0.15.0
333scikit-image 0.22.0
334scikit-learn 1.2.2
335scikit-learn-intelex 20230426.111612
336scipy 1.11.4
337seaborn 0.12.2
338SecretStorage 3.3.1
339semantic-link-sempy 0.9.3
340Send2Trash 1.8.2
341seqeval 1.2.2
342setuptools 68.2.2
343shap 0.42.1
344simplegeneric 0.8.1
345simplejson 3.19.3
346singledispatch 3.7.0
347sip 6.7.12
348six 1.16.0
349slicer 0.0.7
350smmap 4.0.0
351sniffio 1.3.0
352snowballstemmer 2.2.0
353sortedcollections 2.1.0
354sortedcontainers 2.4.0
355soupsieve 2.5
356Sphinx 5.0.2
357sphinxcontrib-applehelp 1.0.2
358sphinxcontrib-devhelp 1.0.2
359sphinxcontrib-htmlhelp 2.0.0
360sphinxcontrib-jsmath 1.0.1
361sphinxcontrib-qthelp 1.0.3
362sphinxcontrib-serializinghtml 1.1.5
363sphinxcontrib-websupport 1.2.4
364SQLAlchemy 2.0.25
365sqlanalyticsfabricconnectorpy 1.0.1
366sqlparse 0.4.4
367stack-data 0.2.0
368statsmodels 0.14.0
369sympy 1.12
370synapseml-cognitive 1.0.10.dev1
371synapseml-core 1.0.10.dev1
372synapseml-deep-learning 1.0.10.dev1
373synapseml-internal 1.0.10.1.dev1
374synapseml-lightgbm 1.0.10.dev1
375synapseml-mlflow 1.0.30.post1
376synapseml-opencv 1.0.10.dev1
377synapseml_utils 1.0.28
378synapseml-vw 1.0.10.dev1
379tables 3.9.2
380TBB 0.2
381tblib 1.7.0
382tenacity 8.2.3
383tensorboardX 2.6.2.2
384terminado 0.17.1
385testpath 0.6.0
386text-unidecode 1.3
387textdistance 4.2.1
388thop 0.1.1.post2209072238
389threadpoolctl 2.2.0
390tifffile 2023.4.12
391tinycss2 1.2.1
392tokenizers 0.15.1
393toml 0.10.2
394tomli 2.0.1
395tomli_w 1.0.0
396toolz 0.12.0
397torch 2.2.1
398torchdata 0.7.1
399torchmetrics 1.4.0.post0
400tornado 6.3.3
401tqdm 4.65.0
402traitlets 5.7.1
403transformers 4.37.2
404truststore 0.8.0
405typed-ast 1.5.5
406typeguard 4.1.2
407typing_extensions 4.9.0
408tzdata 2023.3
409ujson 5.4.0
410unicodecsv 0.14.1
411Unidecode 1.2.0
412urllib3 2.1.0
413virtualenv 20.26.1
414wcwidth 0.2.5
415webencodings 0.5.1
416websocket-client 0.58.0
417websockets 12.0
418Werkzeug 2.3.8
419wheel 0.41.2
420whichcraft 0.6.1
421widgetsnbextension 4.0.10
422workalendar 17.0.0
423wrapt 1.14.1
424xgboost 2.0.3
425xlrd 2.0.1
426XlsxWriter 3.1.1
427xlwt 1.3.0
428xmltodict 0.13.0
429xxhash 2.0.2
430xyzservices 2022.9.0
431yapf 0.40.2
432yarl 1.9.3
433zict 3.0.0
434zipp 3.17.0
435zope.event 5.0
436zope.interface 5.4.0
437zstandard 0.19.0
Microsoft updates the packages quite frequently. The updates do not seem to coincide with new Fabric Runtime releases.
You might also like
If you liked this article, follow me on LinkedIn or Bluesky to stay up-to-date with my latest posts. You might also like the following 2 posts about related topics:
Fabric end-to-end use case: Analytics Engineering part 1 - dbt with the Lakehouse
Welcome to the fourth part of a 5-part series on an end-to-end use case for Microsoft Fabric. This post will focus on the analytics engineering part of the use case. In this series, we will explore how to use Microsoft Fabric to ingest, transform, and analyze data using a real-world use case. The series focuses on data engineering and analytics engineering. We will be using OneLake, Notebooks, Lakehouse, SQL Endpoints, Data Pipelines, dbt, and Power BI.
Fabric end-to-end use case: Data Engineering part 1 - Spark and Pandas in Notebooks
Welcome to the second part of a 5-part series on an end-to-end use case for Microsoft Fabric. This post will focus on the data engineering part of the use case. In this series, we will explore how to use Microsoft Fabric to ingest, transform, and analyze data using a real-world use case. The series focuses on data engineering and analytics engineering. We will be using OneLake, Notebooks, Lakehouse, SQL Endpoints, Data Pipelines, dbt, and Power BI.

